Sistemas dinámicos en contexto: Modelación matemática, simulación, estimación y control con MATLAB
Palabras clave:
Teoría de la estimación, optimización, control modelo matemático, bifurcación, caos, análisis de estabilidad, ecuaciones diferenciales de sistemas dinámicos lineales, tiempo continuo, EDO, EDP, transformada de Laplace, función delta de Dirac, transformada Z, sistemas MIMO, método numérico de Euler, métodos de Runge-Kutta, Bounded Input Bounded Output, Curse of dimensionality, Filtro de Butterworth, MATLAB, Simulink, prototipado evolutivo, IMRADSinopsis
El objetivo general de este libro es identificar, enlazar y aplicar los principales conceptos, métodos matemáticos y herramientas de los sistemas dinámicos, la teoría de la estimación y los sistemas de control en diversas áreas del conocimiento (sistemas en contexto). Esto se logra con la determinación de las características del sistema de manera matemática en problemas sencillos, y computacionalmente, con ayuda de MATLAB y Simulink, en problemas más complejos. Entre las estrategias metodológicas del libro están: el énfasis en una visión sistémica de los temas y los problemas, la aplicación de métodos no lineales con un enfoque desde los sistemas no lineales, la solución de problemas y la verificación de resultados con MATLAB, el énfasis en los conceptos y los métodos de áreas afines (investigación, ciencia, pensamiento sistémico, matemáticas, educación), el enfoque basado en competencias de aprendizaje, casos de estudio de diversa naturaleza (no solamente físicos) en los que se aplican e integran todos los temas vistos en el libro, ejercicios resueltos y propuestos, prácticas tipo proyecto con MATLAB, y otros recursos en el sitio web del libro (https://siscontexto.blogspot.com)
Referencias bibliográficas
C. M. Belcastro, «Validation and Verification Techniques and Tools,» de Encyclopedia of Systems and Control, London, Springer, 2013, pp. 1511-1517.
Wikipedia, «IMRAD,» 4 marzo 2022. [En línea]. Available: https://en.wikipedia.org/wiki/IMRAD.
G.-C. Rota, «Ten lessons I wish I had learned before I started teaching differential equations,» 1997. [En línea]. Available: https://web.williams.edu/Mathematics/lg5/Rota.pdf.
D. G. Zill, Ecuaciones diferenciales con aplicaciones de modelado, Undécima ed., México D.F.: Cengage Learning, 2019, p. 480.
S. Zahedi and A.-K. Tornberg, "Delta function approximations in level set methods by distance function extension," Journal of Computational Physics, vol. 226, no. 6, pp. 2199-2219, 2010.
J. B. Hoagg y D. S. Bernstein, «Nonminimum-phase zeros - much to do about nothing - classical control - revisited part II,» IEEE Control Systems Magazine, vol. 27, nº 3, pp. 45-57, 2007.
K. H. Lundberg y D. S. Bernstein, «Lecture notes - ODES with Differentiated Inputs Specifying Preinitial Conditions,» IEEE Control Systems Magazine, vol. 27, nº 3, pp. 95-97, 2007.
W. S. Levine, The Control Handbook, Mumbay: CRC Press, 1996, p. 1566.
S. Skogestad y I. Postlethwaite, Multivariable Feedback Control: Analysis and Design, Chichester: John Wiley & Sons, 1997, p. 559.
S. C. Chapra y R. P. Canale, Métodos numéricos para ingenieros, 5a. ed., México: McGraw-Hill., 2007, p. 977.
K. Ogata, Sistemas de Control en Tiempo Discreto, 2a. ed., México: Prentice Hall, 1996, p. 745.
K. J. Aström y B. Wittenmark, Computer-Controlled Systems: Theory and Design, 3rd ed., Upper Saddle River: Prentice-Hall, 1997, p. 557.
C. M. Vélez, «c2d_expand,» 25 julio 2022. [En línea]. Available: https://www.mathworks.com/matlabcentral/fileexchange/34179-c2d_expand?s_tid=prof_contriblnk.
A. G. J. MacFarlane y N. Karcanias, «Poles and zeros of linear multivariable systems : a survey of the algebraic, geometric and complex-variable theory,» International Journal of Control, vol. 24, nº 1, pp. 33-74, 1976.
R. Frigg y S. Hartmann, «Models in Science,» 2020. [En línea]. Available: https://plato.stanford.edu/archives/spr2020/entries/models-science/.
E. Winsberg, «Computer Simulations in Science", (ed.), URL = <>.,» 2019. [En línea]. Available: https://plato.stanford.edu/archives/win2019/entries/simulations-science/.
A. Nowak, A. Rychwalska y W. Borkowski, «Why Simulate? To Develop a Mental Model,» Journal of Artificial Societies and Social Simulation, vol. 16, nº 13, p. 12, 2013.
A. Saltelli and S. Funtowicz, "When All Models Are Wrong," Issues in Science and Technology, vol. 30, no. 2, pp. 79-95, 2014.
Wikipedia, "Problem structuring methods," 2022. [Online]. Available: https://en.wikipedia.org/wiki/Problem_structuring_methods. [Accessed 12 12 2021].
B. C. Kuo, Automatic Control Systems, 7a. ed., Englewood: Prentice Hall, 1995, p. 897.
V. Sima, «Interactive Environments and Software Tools for CACSD,» de Encyclopedia of Systems and Control, London, Springer, 2015, pp. 584-590.
A. Varga, «Computer-Aided Control Systems Design: Introduction and Historical Overview,» de Encyclopedia of Systems and Control, London, Springer, 2020.
Mathworks, «Simulink - Simulation and Model-Based Design,» 2022. [En línea]. Available: https://www.mathworks.com/help/simulink/.
Z. Wang y A. Schor, «Simulink Fundamentals,» 2022. [En línea]. Available: https://matlabacademy.mathworks.com/es/details/simulink-fundamentals/slbe.
A. Schor, «Simulink Onramp,» 2022. [En línea]. Available: https://matlabacademy.mathworks.com/es/details/simulink-onramp/simulink.
E. Tzorakoleftherakis, «Five Ways to Document Your Simulink Model,» 2022. [En línea]. Available: https://www.mathworks.com/company/newsletters/articles/five-ways-to-document-your-simulink-model.html.
Mathworks, «S-Function,» 10 agosto 2022. [En línea]. Available: https://www.mathworks.com/help/simulink/slref/sfunction.html.
L. Ljung y T. Glad, Modeling of dynamic systems, Englewood, New Jersey: Prentice Hall, 1994, p. 368.
A. Saltelli, S. Tarantola y F. Campolongo, «Sensitivity Analysis as an Ingredient of Modeling,» Statistical Science, vol. 15, nº 4, pp. 377-395, 2000.
A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana y S. Tarantola, Global Sensitivity Analysis. The Primer, Chichester: John Wiley & Sons Ltd, 2008, p. 304.
A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto y S. Tarantola, «Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index,» Computer Physics Communications, vol. 181, nº 2, pp. 259-270, 2010.
S. Razavi, A. Jakeman, A. Saltelli, C. Prieur, B. Looss, E. Borgonovo y otros, «The Future of Sensitivity Analysis: An essential discipline for systems modeling and policy support,» Environmental Modelling & Software, vol. 137, p. 104954, 2021.
J. R. Taylor, An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, 2nd ed., Sausalito (California): University Science Books, 1997, p. 327.
J. Denker, «Uncertainty as Applied to Measurements and Calculations,» 2011. [En línea]. Available: https://www.av8n.com/physics/uncertainty.htm.
N. Metropolis, «The beginning of the Monte Carlo method,» Los Alamos Science, pp. 125-130, 1987.
I. M. Sobol, «On the distribution of points in a cube and the approximate evaluation of integrals,» USSR Computational Mathematics and Mathematical Physics, vol. 7, nº 4, pp. 86-112, 1967.
M. J. W. Jansen, «Analysis of variance designs for model output,» Computer Physics Communications, vol. 117, nº 1, pp. 35-43, 1999.
C. M. Vélez, «Global sensitivity and uncertainty analysis (GSUA),» 2 mayo 2022. [En línea]. Available: https://www.mathworks.com/matlabcentral/fileexchange/47758-global-sensitivity-and-uncertainty-analysis-gsua.
H. Harvey, «Pplane,» 2024. [En línea]. Available: https://www.mathworks.com/matlabcentral/fileexchange/61636-pplane.
H. K. Khalil, Nonlinear Systems, 3rd ed., New York: Prentice Hall, 2002, p. 750.
J. P. Crutchfield, J. D. Farmer, N. H. Packard y R. S. Shaw, «Caos,» Investigación y Ciencia, pp. 16-29, 1987.
A. M. Lyapunov, The General Problem of the Stability of Motion - Doctoral dissertation (In Russian), Kharkov: Kharkov Mathematical Society, 1892, p. 251.
A. M. Lyapunov, The general problem of the stability of motion, London: Taylor & Francis, 1992, p. 270.
E. J. Routh, A treatise on the stability of a given state of motion, particularly steady motion, London: Macmillan and co, 1877, p. 108.
A. Hurwitz, «Ueber die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen Theilen besitzt,» Mathematische Annalen, vol. 46, p. 273–284, 1895.
M.-T. Ho, A. Datta y S. P. Bhattacharyya, «An elementary derivation of the Routh-Hurwitz criterion,» IEEE Transactions on Automatic Control, vol. 43, nº 3, pp. 405-409, 1998.
C. M. Vélez, «Routh's array in symbolic way,» 13 octubre 2015. [En línea]. Available: https://www.mathworks.com/matlabcentral/fileexchange/33926-routh-s-array-in-symbolic-way.
E. I. Jury y J. Blanchard, «A Stability Test for Linear Discrete Systems in Table Form,» Proceedings of the IRE, vol. 21, pp. 1947-1948, 1961.
E. I. Jury, «On the roots of a real polynomial inside the unit circle and a stability criterion for linear discrete systems,» IFAC Proceedings Volumes, vol. 1, nº 2, pp. 142-153, 1963.
C. M. Vélez, «Jury's array in symbolic way,» 12 mayo 2022. [En línea]. Available: https://www.mathworks.com/matlabcentral/fileexchange/34009-jury-s-array-in-symbolic-way.
A. A. M. Samad T., Ed., The Impact of Control Technology, 2nd edition ed., IEEE Control Systems Society, 2014.
N. Minorsky, «Directional stability of automatically steered bodies,» J. Amer. Soc of Naval Engineers, vol. 34, nº 2, pp. 280-309, 1922.
K. J. Aström y T. Hägglund, Advanced PID Control, Research Triangle Park, North Carolina: ISA, 2006, p. 460.
D. Tilbury y B. Messner, «Control Tutorials for MATLAB and Simulink (CTMS),» 2022. [En línea]. Available: https://ctms.engin.umich.edu/CTMS/index.php?example=Introduction§ion=ControlPID.
J. G. Ziegler y N. B. Nichols, «Optimum settings for automatic controllers,» Transactions of the ASME, vol. 64, p. 759–768, 1942.
K. L. Chien, J. A. Hrones y J. B. Reswick, «On the automatic control of generalized passive systems,» ASME Transactions, vol. 74, pp. 175-185, 1952.
O. J. Smith, «Closer control of loops with dead time,» Chemical Engineering Progress, vol. 53, nº 5, pp. 217-219, 1957.
J. E. Normey-Rico y E. F. Camacho, The Smith Predictor. In: Control of Dead-time Processes, London: Springer, 2007, p. 462.
K. J. Aström y L. Rundqwist, «Integrator Windup and How to Avoid It,» de American Control Conference, Pittsburgh, 1989.
R. Kalman, B. L. Ho y K. S. Narendra, «Controllability of linear dynamical systems,» Contributions to Differential Equations, pp. 189-213, 1963.
C.-T. Chen, Linear System Theory and Design, Third ed. ed., Oxford University Press, 1998, p. 334.
C. M. Vélez, «Controllability and observability index vectors,» 19 julio 2022. [En línea]. Available: https://www.mathworks.com/matlabcentral/fileexchange/114005-controllability-and-observability-index-vectors.
L. Ljung, System identification: Theory for the user, 2nd ed., Upper Saddle River: Prentice Hall, 1999, p. 609.
T. Söderström y P. Stoica, System Identification, Cambridge: Prentice Hall, 1989, p. 612.
Mathworks, «System Identification Toolbox,» 20 agosto 2022. [En línea]. Available: https://www.mathworks.com/help/ident/.
A. Lund, S. J. Dyke, W. Song y I. Bilionis, «lobal sensitivity analysis for the design of nonlinear identification experiments,» Nonlinear Dynamics, vol. 98, p. 375–394, 2019.
F. J. Harris, «On the use of windows for harmonic analysis with the discrete Fourier transform,» Proceedings of the IEEE, vol. 66, nº 1, pp. 51-83, 1978.
C. F. Gauss, Theoria motus corporum coelestium in sectionibus conicis solem ambientium, Hamburgo: Hamburgi sumptibus Frid. Perthes et I. H. Besser, 1809, p. 247.
A.-M. Legendre, Nouvelles méthodes pour la détermination des orbites des comètes, París: F. Didot, 1805, p. 80.
M. Brookes, «The Matrix Reference Manual,» Imperial College, 2020. [En línea]. Available: http://www.ee.imperial.ac.uk/hp/staff/dmb/matrix/intro.html.
U. Forssell y L. Ljung, «Identification of unstable systems using output error and Box-Jenkins model structures,» IEEE Transactions on Automatic Control, vol. 45, nº 1, pp. 137-141, 2000.
Wikipedia, «Gradient descent,» 4 agosto 2022. [En línea]. Available: https://en.wikipedia.org/wiki/Gradient_descent
Wikipedia, «Gauss–Newton algorithm,» 4 agosto 2022. [En línea]. Available: https://en.wikipedia.org/wiki/Gauss%E2%80%93Newton_algorithm.
Wikipedia, «Levenberg–Marquardt algorithm,» 4 agosto 2022. [En línea]. Available: https://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt_algorithm.
T. Söderström y L. Ljung, Theory and Practice of Recursive Identification, London: MIT Press, 1983, p. 544.
Wikipedia, «Woodbury matrix identity,» 9 agosto 2022. [En línea]. Available: https://en.wikipedia.org/wiki/Woodbury_matrix_identity.
K. B. Petersen y M. S. Peders, The Matrix Cookbook, 2008, p. 71.
Mathworks, «lbqtest,» 07 2022. [En línea]. Available: https://www.mathworks.com/help/econ/lbqtest.html.
C. M. Vélez, «Whiteness test,» 23 julio 2002. [En línea]. Available: https://www.mathworks.com/matlabcentral/fileexchange/115370-whiteness-test.
B. Efron, «Bootstrap methods: Another look at the jackknife,» The Annals of Statistics, vol. 7, nº 1, pp. 1-26, 1979.
R. Davidson y J. G. MacKinnon, «Bootstrap tests: how many bootstraps?,» Econometric Reviews, vol. 19, nº 55-68, p. 1, 2000.
C. M. Vélez, «Confidence intervals using bootstrapping,» MATLAB Central File Exchange, 22 agosto 2022. [En línea]. Available: https://www.mathworks.com/matlabcentral/fileexchange/116595-confidence-intervals-using-bootstrapping.
Mathworks, «Simulink Design Optimization Toolbox,» [En línea]. Available: https://www.mathworks.com/help/sldo/. [Último acceso: 20 08 2022].
D. Luenberger, «Observers for multivariable systems,» IEEE Transactions on Automatic Control,, vol. 11, nº 2, pp. 190-197, 1966.
R. Kalman, «A New Approach to Linear Filtering and Prediction Problems,» ASME Journal of Basic Engineering, vol. 82, nº 1, pp. 35-45, 1960.
L. Chisci y A. Farina, «Survey on Estimation,» de Encyclopedia of Systems and Control, London, Springer, 215, pp. 367-384.
M. S. Grewal y A. A. P., «Applications of Kalman Filtering in Aerospace 1960 to the Present [Historical Perspectives],» IEEE Control Systems Magazine, vol. 30, nº 3, pp. 69-78, 2010.
M. S. Grewal y A. P. Andrews, Kalman Filtering: Theory and Practice Using Matlab, Fourth ed., Hoboken, New Jersey: Wiley, 2014, p. 617.
O. A. Stepanov, «Kalman filtering: Past and present. An outlook from Russia (On the occasion of the 80th birthday of Rudolf Emil Kalman),» Gyroscopy and Navigation, vol. 2, pp. 99-110, 2011.
Wikipedia, «Kalman filter,» [En línea]. Available: https://en.wikipedia.org/wiki/Kalman_filter. [Último acceso: 1 septiembre 2022].
L. A. Mcgee y S. F. Schmidt, «Discovery Of The Kalman Filter As A Practical Tool For Aerospace And Industry,» NASA, Moffett Field California, 1985.
G. Welch y G. Bishop, «The Kalman Filter: Some tutorials, references, and research related to the Kalman filter.,» University of Central Florida, [En línea]. Available: http://www.cs.unc.edu/~welch/kalman/. [Último acceso: 1 septiembre 2022].
A. Tabor, «Math Invented for Moon Landing Helps Your Flight Arrive on Time,» NASA, 19 julio 2019. [En línea]. Available: https://www.nasa.gov/feature/ames/math-invented-for-moon-landing-helps-your-flight-arrive-on-time. [Último acceso: 1 septiembre 2022].
F. E. Daum, «Kalman Filters,» de Encyclopedia of Systems and Control, London, Springer, 2015, pp. 605-608.
F. E. Daum, «Extended Kalman Filters,» de Encyclopedia of Systems and Control, London, 2015, 2015, pp. 411-413.
C. J. Backi, J. T. Gravdahl y S. Skogestad, «Combined state and parameter estimation for not fully observable dynamic systems,» IFAC Journal of Systems and Control, vol. 13, nº 100103, p. 100103, 2020.
H. Khodadadi y H. Jazayeri-Rad, «Applying a dual extended Kalman filter for the nonlinear state and parameter estimations of a continuous stirred tank reactor,» Computers & Chemical Engineering, vol. 35, nº 11, pp. 2426-2436, 2011.
N. Wassiliadis, J. Adermann, A. Frericks, M. Pak, C. Reiter, B. Lohmann y M. Lienkamp, «Revisiting the dual extended Kalman filter for battery state-of-charge and state-of-health estimation: A use-case life cycle analysis,» Journal of Energy Storage, vol. 19, pp. 73-87, 2018.
Mathworks, «pidTuner,» 2022. [En línea]. Available: https://www.mathworks.com/help/control/ref/pidtuner.html.
D. Luengo, L. Martino, M. Bugallo, V. Elvira y S. Särkkä, «A survey of Monte Carlo methods for parameter estimation,» EURASIP J. Adv. Signal Process, nº 25, 2020.
W. Barie y J. Chiasson, «Linear and nonlinear state-space controllers for magnetic levitation,» International Journal of Systems Science, vol. 27, nº 11, pp. 1153-1163, 1996.
A. J. Lotka, «Analytical note on certain rhythmic relations in organic systems,» Proceedings of the National Academy of Sciences of the United States of America, vol. 6, nº 7, pp. 410-415, 1920.
V. Volterra, «Fluctuations in the abundance of a species considered mathematically,» Nature, vol. 118, pp. 558-560, 1926.
P. A. Piana, L. C. Gomes y A. A. Agostinho, «Comparison of predator–prey interaction models for fish assemblages from the neotropical region,» Ecological Modelling, vol. 192, nº 1-2, pp. 259-270, 2006.
T. K. Kar, «Stability analysis of a prey–predator model incorporating a prey refuge,» Communications in Nonlinear Science and Numerical Simulation, vol. 10, nº 6, pp. 681-691, 2005.
D. P. Dunn y K. A. Hovel, «Predator type influences the frequency of functional responses to prey in marine habitats,» Biology Letters, vol. 16, nº 1, 2020.
Descargas
